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Abstract

This paper presents a detailed analysis of magnetic flux losses in explosive driven flux compression generators.
Magnetic field diffusion into generator conductors can lead to substantial losses. A study of linear diffusion is
therefore the major subject treated in this paper. Diffusion analysis is considerably complicated by the presence of
moving conductors and the compression of magnetic flux. Consequently, the text is treated in a tutorial fashion.
This is particularly true in the earlier parts of the paper, where formulation of the basic equations, various
conservation laws, and problem solutions are treated in considerable detail. A point of departure from earlier
treatments of the subject is the addition of external circuits to the generators. It is shown that the influence of
these circuits enters into the boundary conditions for the diffusion equations. A number of analytic solutions are
obtained for various external circuits.
This paper is an amended version of an earlier Los Alamos National Laboratory Report. LA-9956-MS, Part I,
(1984) by C.M. Fowler entitled, ”Losses in Magnetic Flux Compression Generators, Part I: Linear Diffusion”.
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Losses in Magnetic Flux Compression Generators: Linear Diffusion

1. Introduction

The purpose of this paper is to consider is some
detail some of the electromagnetic phenomena
associated with explosive-driven magnetic flux
compression generators (FCGs). A primer that
treated these devices in a general manner was
published in 1975 by Fowler, Caird, and Garn [1].
As with the great bulk of other work published on
these generators, the associated analytic treatment
was carried out with lumped parameter models. The
authors referred the readers to other works for more
extensive analyses, such as the diffusion of magnetic
fields into conducting elements of the generators. An
understanding of this diffusion is extremely important
as the processes can lead to substantial generator
losses.

The subject of this paper is one-dimensional
(1D) linear magnetic diffusion. Unlike the diffusion
treatments normally encountered, including heat
conduction, the presence of moving boundaries and
compression of magnetic flux greatly complicate the
situation. Only a very few analytic solutions have
been obtained previously. These solutions, together
with several new solutions, are included in this
paper. Most of the solutions are obtained by Laplace
transformation techniques, some of which are not
often encountered. Since one of the objectives of
this paper was to make it tutorial in nature, the
earlier problems, in particular, are treated in detail,
considerably more than would appear in a journal
article, for example. In this regard, the solutions
have been written mainly in terms of the Bromwich
contour integral rather than using the L−1 notation
for the inverse of the transforms. Partly, this is because
additional integrations are required for some solutions
and partly because the symbol for inductance, L,
occurs many times in the text. A class of explosive
flux compression devices called plate generators serves
as the vehicle for the text examples. Fig. 1.1 is a
schematic drawing that shows a cross-sectional view of
this generator with a cylindrical load coil. The solid
lines are metallic conductors. The active volume of
the generator is bounded by the rectangular section.
The upper and lower faces (plates) of the rectangular
section are adjacent to high-explosive slabs. The
cylindrical load coil is connected in series to the
generator by a short transmission line.

The generator system works in the following way.
Initial magnetic flux is first induced in the generator
working volume. This is accomplished either by a
capacitor discharge through the system (as indicated
in Fig. 1.1) or by current flowing through an external
coil system. When capacitor banks are used, initial
flux is also developed in the load coil. The explosive
slabs are detonated at such a time that the generator
current input slot is closed off (through motion of the
top plate) at or near the time when maximum initial

Fig. 1.1. Schematics drawing of a plate generator with
external load coil.

flux is developed. The flux is now confined completely
by metallic conductors. As time progresses, the top
and bottom plates move inward as shown for one
instant of time in Fig. 1.1 by the dashed lines. The
flux is therefore compressed into a region of lower
inductance with a consequent increase in current and
magnetic energy.

The plate generator is suitable for powering low-
inductance systems requiring large current and power
delivery. The power level is controlled, in part, by the
speed at which the generator volume is decreased.
Using light-weight plates, such as dural, velocities
of 5 km/s have been achieved. With two convergent
plates, as shown in Fig. 1.1, the relative plate speed
approaches 10 km/s. For a given generator, the current
carrying capacity is limited by the width of the
conductors, which in the case of plate generators, is
perpendicular to the cross-sectional view of Fig. 1.1.

The plate generator concept is not new [2] and it has
been used in one form or another for many years. The
generator plate dimensions formerly were limited by
the size of suitable plane explosive initiation systems.
However, a few years ago a new initiation system
was developed at Los Alamos that had no inherent
limitations on the area it could initiate. This led to
significant advances in both size and versatility of the
generators [3].

Normally, the performance of a generator-powered
circuit is obtained from the solution of lumped
parameter equations. As an example, the following
single equation represents the system shown in
Fig. 1.1:

d

dt
[LG(t)I] + IR + Ll

dI

dt
+ Ll dI

dt
= 0,

I(0) = I0.
(1.1)

Here, LG(t) is the inductance of the generator,
which changes with time under explosive action, I
is the current flowing through the system, Ll is the
inductance of the cylindrical load coil, and Ll is the
stray or source inductance in the system. The initial
value of the current in the system at the start of
plate motion; i.e., the time when the top plate closes
off the feed current input slot, is represented by the
notation I0. This also removes the capacitor bank from
any further interaction with the system. Allowance is
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Fig. 1.2. External circuit elements attached to plate
generator output.

made for the non-perfect conductivity of the system
by insertion of the resistive term, IR, in the equation.
Values of R are generally assigned so that the analytic
solutions agree most closely with experimental results.

The generator inductance is presumed to be known
as a function of time. If the length l and width w of
the plate generator in Fig. 1.1 are much greater than
plate separation, 2x, the inductance of the generator
can be written:

LG = µl · 2x

w
. (1.2)

After a short acceleration period, the generator plate
speeds level off to an approximately constant velocity.
Thus, if the initial plate separation is 2x0 and the
average plate velocity is v, the time varying generator
inductance can be approximated by

LG(t) = µl
2(x0 − vt)

w
. (1.3)

An equivalent expression is

L = L0

(

1 − t

τ

)

, L0 =
2µlx0

w
, τ =

x0

v
. (1.4)

In the discussion to follow, the plate generator
inductance will be represented by the expressions
given in Eqs. (1.3) and (1.4). As will be seen later,
use of this approximate form greatly simplifies the
analysis, but still allows investigation of the salient
features of the examples to be considered.

Evaluation of the source or stray inductance, Ll, of
Eq. (1.1) is the major objective of this study. As it
turns out, one of the major losses in FCGs resides
in the flux trapped in the so-called ”skin” of the
metal conductors. This flux, which increases during
generator operation, is normally not retrievable after
burnout. A realistic evaluation of the skin depths
requires magnetic diffusion theory.

To illustrate the contents of this paper and to
point out areas of departure from previous work
in magnetic diffusion, consider Fig. 1.2. Formally,
this system is equivalent to that shown in Fig. 1.1,
where performance is represented by Eq. (1.1), in
which part of the resistance and source inductance is

estimated for the generator. In the class of problems
to be studied in this paper, lumped parameters are
employed in the external circuitry, but complete
space-time variables are used for the generator plates.
This is the major point of departure from past work,
which is, to the best of our knowledge, devoted entirely
to studies aimed at establishing values of maximum
magnetic fields attainable from flux compression
devices with no external circuitry.

Knoepfel [4], in his books Pulsed High Magnetic

Fields and Magnetic Fields: A Comprehensive

Theoretical Treatise for Practical Use, surveys
previous work in magnetic field diffusion. Paton
and Miller [5], Lehner, Linhart, and Somon [6] and
Bichenkov [7] have presented analytic solutions to the
plane compression problem.

The organization of this paper is as follows:
• In Sec. 2, Maxwell’s equations are adapted to the

plane diffusion problem, boundary conditions are
defined, the energy balance equation for nonlinear
diffusion problems is set forth, and expressions for
effective plate resistance, skin depth, and flux loss
are developed.

• In Sec. 3, new closed-form solutions are obtained
for the linear problem (constant conductivity)
and fixed (nonmoving) plane-bounded cavities
coupled to external lumped circuits. It is
shown how the ordinary differential equations
encountered in lumped circuit analysis appear as
boundary conditions in the diffusion equations.

• Lumped parameter solutions in simple systems,
such as shown in Fig. 1.1, are developed in Sec.
4 mainly for comparison with the more extensive
solutions developed later.

• Moving plate problems are treated in Sec. 5,
where new closed form solutions are presented for
several linear cases.

2. Basic equation

The essential elements of the class of problems
under consideration in this paper are illustrated in
Fig. 1.2. For the most part, the generator is taken
as symmetric about a center-plane between the two
slabs, so that the analysis is restricted to only one of
the two plates.

The external circuitry shown in the figure can
be generalized in any required manner with the
understanding that it is handled by means of lumped
parameters and engineering circuit theory. There may
be any number of coupled circuits, switches, etc.,
but for each branch, the various circuit elements
are represented by lumped resistances, capacitances,
inductances, etc. A single total current is considered
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Fig. 2.1. Illustration of current concentration at
conductor edges.

to adequately represent charge flow in each branch. In
other words, Kirchhoff’s laws are considered to apply.
A number of simplifying restrictions are required
to obtain reasonably manageable solutions which
embody the diffusion aspects of the slab walls:
• The slabs are treated as incompressible. For

the cases of most interest; that is, when the
slabs function as moving walls in the generator,
the instantaneous velocities of every element in
the slabs are equal. This greatly simplifies the
electromagnetic analysis in that only a single
instantaneous velocity is required throughout the
moving medium. In fact, this allows one to handle
the moving medium as stationary in all respects
for first order accuracy and throws the entire
burden of accounting for the motion onto the
v × B voltage developed at the boundary.

• Although much of the work set forth in this paper
can be carried further with variable instantaneous
slab velocities, most of the questions in which
we are interested can be elucidated by assuming
the slab velocities are constant. In view of
the resulting great reduction in complexity, the
slab velocities are taken to be constant for the
generator problems to be considered later.

• The slab material will be treated as isotropic.
Electrical conductivity and later thermal
conductivity will be considered to be scalars. The
conductivities may be functions of temperature
or deposited energy, but they are independent of
direction or hysteresis effects. The permeability
and susceptibilities are taken as constants, and
further, when the situation arises, free space
values are usually employed, although this is not
required.

• Only the single Cartesian space variable, x,
is employed in the analysis. As will be seen
later, magnetic skin depths are generally quite
small. Parts of the analysis should therefore be
applicable to other non-planar systems except
for regions of very large curvature, such as the

later stages of cylindrical compression. The length
and width of the plates are assumed to be much
larger than plate spacing or thicknesses to justify
the 1D treatment. Clearly, this analysis will not
account for the tendency of currents to build
up near the edges of conductors as a means of
uniformly distributing the flux contained under
each current-carrying element of the conductor,
such as shown in Fig. 2.1.

When a total current I flows in good conducting
parallel plates of finite width, w, (into the upper plate
and out of the lower plate) the current density is not
uniform. Rather, there is a build up of current near
the ends of the plate (±w/2) in such a manner as
to generate a constant flux along the width of the
conductor. Across the central plane, aa, the magnetic
fields are nearly uniform. Near the conductor edges,
such as the plane bb, the fields near the plates are
larger and those in the mid-region, b′, are smaller
than the nearly uniform values in the aa plane. The
total fluxes in both planes are nearly the same. If
the current density was uniform, the total flux would
be smaller at bb′b than at aa, approaching only half
the value as the widths become very great compared
to the spacing. This feature has been discussed by
Kerrisk [8].

This flux-distributing effect of good conductors
is most pronounced for systems where the width
and spacing are comparable. In this case, fields
actually existing in the central region may be 10–
20 % smaller than the values calculated based upon
an assumed uniform current distribution. This two-
dimensional (2D) effect cannot, of course, be treated
here. However, the effect is not large if the lateral
dimensions are several times larger than the x-
dimensions that are significant. In fact, for most of the
practical systems developed in this paper, another 2D
effect is of at least comparable significance. This effect
is the natural lagging near the edges of explosively
propelled plates, which also must be ignored in this
paper.

2.1. Standard Slab Geometry

Fig. 2.2 is a sketch of one of the two slab faces.
Coordinates are standard Cartesian, x corresponding
to a position in the slab. Current densities and
electric fields are in the z-direction, slab motion in
the negative x-direction, and magnetic fields will be
in the negative y-direction. The slab length, l, in the
direction of the currents, and the width, w, are both
large enough that edge effects are considered negligible
as discussed earlier.

Maxwell’s equations and Ohm’s laws take the

”Electromagnetic Phenomena”, V.3, №4 (12), 2003 423



C.M. Fowler, L.L. Altgilbers

Fig. 2.2. Coordinates and slab dimensions employed
in text.

following form:

∇× ~E = −∂ ~B

∂t
, (2.1)

∇× ~B = µ~j +
1

c2

∂ ~E

∂t
, (2.2)

~j = σ ~E ≡ 1

ρ
~E. (2.3)

As noted earlier, the wave nature of the fields is not
considered. Also, the displacement current in Eq. (2.2)
is neglected. The scalar resistivity (inverse of the
conductivity) may depend upon other variables. It is
now assumed that all field quantities depend upon
time, t, and the single space variable, x, and write

~j = j(x, t)~c, (2.4)

~E = E(x, t)~c, (2.5)

~B = B(x, t)~b, (2.6)

The Cartesian unit vectors (~a,~b,~c) do not appear
elsewhere in this paper, so Eqs. (2.1)–(2.3) reduce to
the following form:

∂E

∂x
=

∂B

∂t
, (2.7)

∂B

∂t
= µj = µσE =

µ

ρ
E. (2.8)

As is well known, under the conditions of constant
velocity, Maxwell’s equations for a moving slab
reduce to those for a stationary slab (to first-
order corrections in slab velocity relative to that of

light) with the addition of motional electric fields
at the boundary. More generally, the electric field
generated by changing magnetic fields, Eq. (2.1), for
moving conductors give rise to motional potentials
around a circuit given by the total change in flux
compressed by the circuit. This potential, added to
any other potential sources in the circuit, gives the
total potential drop across the circuit as measured by
an observer fixed with respect to the external circuitry.
Thus, in Fig. 1.2, the potential appearing across the
leads to the external circuitry arises from resistive
drops along the generator plates and from changes in
magnetic flux bounded by the plates.

A precise accounting of the transient fields, both
between the slabs and outside them, will not be
discussed in this paper, but rather in future papers.
However, in the spirit of the diffusion equation
approximation for the slab, the displacement currents
for the free space regions adjacent to the slabs are also
neglected. This is equivalent to assuming a spatially
uniform but time-varying magnetic field in the region
between the two conducting plates [9]. From Eq. (2.7),
the inter-slab electric field varies linearly with distance
between the slabs. The amplitude is set by values of
E at the slab boundaries and the time behavior is
governed by the cavity magnetic field time behavior.

Because the permeability of the slabs is taken as
that of vacuum (not a necessary restriction here),
the magnetic fields are continuous across the slab
boundaries. Thus, the magnetic fields at the inner
slab boundaries, B(0, t), are equated to the inter-slab
cavity field.

It can be shown that in the absence of externally
impressed magnetic fields on the slab system, the
magnetic field on the outer slab boundaries is zero in
the diffusion equation approximation. Before showing
this and deriving other relationships of interest, the
question of the algebraic sign of the magnetic field will
be addressed. The cross sections of the two symmetric
slabs are shown in Fig. 2.3 at one instant in time.
The subsequent analysis will be carried out only on
the right slab, where x > 0, since proper attention
to symmetry will eliminate the need for further
consideration of the left slab. Shown plotted across the
slabs in solid lines are curves representing the current
density. In subsequent analysis, at least initially, the
current will be considered as positive in the right-
hand slab. The current densities in the left-hand, or
return, slab are then negative. At the time t1, current
densities are plotted for both slabs. On the right-hand
slab, the current density is also plotted for a later
time, t2. (Note: In generator problems, the currents
normally increase with time.) The electric fields differ
from the current densities only by the conductivity
factor, σ, according to Eq. (2.3). The magnetic fields
must appear qualitatively as sketched in Fig. 2.3 with
dashed lines, for they must increase negatively in time,
from Eq. (2.7), but have positive space derivatives,
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Fig. 2.3. Comparison of slab current densities and
magnetic fields at two different times.

from Eq. (2.8). Further, from Stokes theorem and
Eq. (2.2), or more specifically, Eq. (2.8), the line
integral of the magnetic field which encloses both
conductors must be zero. Symmetry then demands
that the magnetic fields must be zero on the outer
slab boundaries.

The total current, I, flowing through the slab of
width, w, and thus through the external circuitry as
well, is the areal integral of the current density:

I = w

λ
∫

0

j(x, t)dx. (2.9)

Here, as in most tractable problems, the slab origin
is shifted to zero. The slab thickness is λ, which, in
most cases, is taken to be infinite.

Integration of Eq. (2.8) with B(λ, t) = 0, yields the
results

B(x, t) = − µ

w
I(t) + µ

x
∫

0

j(x, t)dx, (2.10)

B(0, t) = Bcavity = − µ

w
I(t). (2.11)

Equation (2.11) is particularly significant in that
it relates the cavity field to the total current flowing
through the system and further shows that opposite
signs must be assigned to the current and the magnetic
field.

The magnetic field diffusion equation follows from
Eqs. (2.7) and (2.8):

∂B

∂t
=

∂

∂x

(

ρ

µ

)

∂B

∂x
. (2.12)

The solution of this equation under various conditions
forms the basis for most of this paper. Some quantities
of interest are the following:

(i) Magnetic Skin Depth, Dsk. This quantity is
defined at any instant in time as that depth in
the slab, which, when multiplied by the inner
boundary, or cavity, field gives the flux in the
slab:

Dsk(t) =

λ
∫

0

B(x, t)

B(0, t)
dx. (2.13)

(ii) Flux Leakage. Integration of Eq. (2.12) over the
slab gives

∂

∂t

λ
∫

0

B(x, t)dx =

λ
∫

0

∂

∂x

(

ρ

µ

)

∂B

∂x
dx

or

∂φslab

∂t
=

(

ρ

µ

∂B

∂x

)

λ

−
(

ρ

µ

∂B

∂x

)

0

.

(2.14)

The integration of Eq. (2.14) is clear. The
quantity φslab is the flux per unit length residing
in the slab. Its increase with time is given by the
difference of the two terms at its boundaries. Flux
enters the slab at the inside boundary and leaves
at the outer boundary:

(

− ρ

µ

∂B

∂x

)

0,λ

= rate of flux leakage

into and out of slab

percunit length.

(2.15)

It was mentioned earlier that the potential drop
across the inner slab faces consists of the term
−(dφ/dt) enclosed by the slabs, as well as other
terms such as resistive potential drops along the
slab. The resistive term will now be considered.
Equation (2.8) relates the electric field at the
slab boundary to the boundary magnetic field
gradient. If the slab lengths are l, the resistive
potential drop across the two slabs, 2E(0, t)l,
becomes

Vres = 2l

(

ρ

µ

∂B

∂x

)

x=0

. (2.16)

(iii) Effective Slab Resistance, Rsq. Frequently there
is interest in an effective resistance per square
for the slabs. Equating the above expression to
IR and eliminating I by using Eq. (2.11), an
expression for the resistance can be written:

R = −2l

w

(

ρ
∂B

∂x

)

x=0

B(0, t)
.

Since 2l/w is the number of slab squares in the
generator, the resistance per square, Rsq, is

Rsq = −

(

ρ
∂B

∂x

)

x=0

B(0, t)
. (2.17)
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For very thin slabs, it will be shown later that
both ρ and ∂B/∂x are independent of x. In this
case, the resistance per square is reduced to ρ/λ,
where λ is the thickness of the slab. For thick
slabs, if the spatial variation of B is exponential,
with e-folding distance δ, Rsq reduces to ρ/δ.
It is clear, however, that difficulties may be
encountered with this definition, for example, if
the cavity field gets very small or reverses signs.

2.2. Resistivity Variations

Considerable simplification of the calculations is
achieved by limiting the variation of resistivity to
linear variations with temperature. The form for the
resistivity that has been selected is that given in Eq.
(2.18), where α is constant:

ρ(T ) = ρ0[1 + α(T − T0)]. (2.18)

Thermal conductivity effects have been shown to
be small. Consequently, they are ignored here and the
heating effects are then assumed to arise only from
energy deposition from the currents flowing in the
conductors. Thus, the temperature rise in time ∆t is
given by

DC∆T = j2ρ∆t. (2.19)

Here, D is the density of the conductor and C is the
specific heat. Replacing the current density with the
magnetic field gradient, from Eq. (2.8), eliminates the
temperature from Eq. (2.18) and yields an expression
for the normalized resistivity, r:

r =
ρ

ρ0
(2.20)

and
∂r

∂r
=

αρ0

µ2DC
r

(

∂B

∂x

)2

. (2.21)

It is assumed that initially the slabs have constant
resistivity, ρ0, throughout their structure and that
the density and heat capacity are constant. It then
becomes convenient to lump the constant terms in Eq.
(2.21) together and rewrite this equation as follows:

∂r

∂t
= Kr

(

∂B

∂x

)2

, K =
αρ0

DCµ2
. (2.22)

2.3. Collection of Equations

The dependent variables are the magnetic field
B(x, t), the normalized resistivity r(x, t), and the total
current I, which is related to the inner slab boundary,
or cavity field, Eq. (2.11).

The partial differential equation for r(x, t) is
Eq. (2.21), which, in terms of the normalized

resistivity, r, can be used to rewrite the magnetic
diffusion equation as follows:

∂B

∂t
=

ρ0

µ

∂

∂x

(

r
∂B

∂x

)

. (2.23)

The initial conditions generally are r(x, 0) = 1 and
B(x, 0) = 0. There are no boundary conditions for r.

At the outer slab boundary, the magnetic field is
zero: B(λ, t) = 0. The inner slab boundary condition
is derived by making the total potential drop around
the slabs and any connected external circuitry equal
to zero. The potential drop around the slabs consists
of the negative rate of change of flux enclosed by
the slabs and the resistive drop along the slabs of
Eq. (2.16). The boundary condition is then given by
the following equation, where ρ has been replaced by
the normalized resistivity:

−dφcavity

dt
+

2lρ0

µ

(

r
∂B

∂x

)

x=0

+ Vext = 0. (2.24)

For linear problems of constant conductivity, the
solutions are usually developed in terms of the
constant conductivity, σ = 1/ρ0. The applicable
equations then become

∂B

∂t
=

1

µσ

∂2B

∂x2
(2.25)

and

−dφcavity

dt
+

2l

µσ

(

∂B

∂x

)

x=0

+ Vext = 0. (2.26)

A few solutions to the linear problem, Eqs. (2.25)
and (2.26), are given in Sec. 3 and illustrate how
external circuitry enters as a boundary condition in
the diffusion equation. For these examples, the slabs
will be taken as stationary.

2.4. Energy Balance

It is shown first that the Poynting flux into the
two slab faces accounts for the magnetic field energy
and heat dissipation in the slabs. In the first example
with fixed slab boundaries, it is then shown that
this energy is at the expense of the initial cavity
magnetic field energy. Then, the moving slab geometry
with external circuitry is considered. It is shown that
additional energy supplied to the system arises from
the well-known lumped parameter generator power
term, 0.5I2dL/dt. The analysis is given for arbitrary
temperature variation of the slab resistivity.

The electric field is given by Eq. (2.8). The energy
input, PE, to the two slabs from the Poynting flux,
E × H is then given by

PE = −2lwρ0

µ2

t
∫

0

(

rB
∂B

∂x

)

x=0

dt. (2.27)
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The energy dissipated as heat is obtained by
integrating j2ρ over the slab volumes and time.
Equation (2.8) yields j that can be used to find
the energy deposited in the slabs, SE, including the
magnetic energy:

SE = 2lw

∞
∫

0

B2(x, t)

2µ
dx

+
2lwρ0

µ2

t
∫

0

∞
∫

0

r

(

∂B

∂x

)2

dxdt. (2.28)

Differentiation of this expression with respect to
time followed by parts integration of the last term
yields the expression

2lw

µ

[

∞
∫

0

B
∂B

∂t
dx +

ρ0

µ
rB

∂B

∂r

∣

∣

∣

∣

∞

0

−
x

∫

0

ρ0B

µ

∂

∂x
r
∂B

∂x
dx

]

. (2.29)

The integral terms vanish, from Eq. (2.12), and
the remaining term evaluated at x = 0 is just the
integrand of Eq. (2.27). Thus, the Poynting flux from
the cavity supplies both the magnetic and thermal
energies resident in the slabs.

Further deductions can be made by linking the
Poynting flux to the slab boundary condition,
Eq. (2.24). As a first example, let’s consider stationary
slabs with an initial cavity field B0 and no external
circuitry. The cavity flux is then 2x0lB(0, t). The space
derivative in Eq. (2.27) may now be eliminated by
using the boundary condition. Integration yields

PE =
2lwx0[B

2
0 − B2(0, t)]

2µ
. (2.30)

Therefore, the Poynting energy, which supplies
energy to the slabs, arises from the loss of magnetic
energy in the cavity. In other words, total energy is
conserved.

Now let’s consider the general boundary condition,
which includes an external potential source and allows
for slab motion. Eliminating the field space derivatives
from Eq. (2.24), the Poynting energy becomes

PE = −2

t
∫

0

wB(0, t)

2µ

(

dφcavity

dt
− Vext

)

dt. (2.31)

The cavity flux is 2xlB(0, t). Replacing B(0, t) with
the current, I, Eq. (2.11), and replacing x with the
cavity inductance, L = 2µlx/w, the following is
obtained:

PE = −
t

∫

0

[

I
d(LI)

dt
+ IVext

]

dt. (2.32)

Rearrangement of Eq. (2.32) yields the equation

t
∫

0

−1

2
I2 dL

dt
dt =

1

2
LI2 − 1

2
L0I

2
0

+

t
∫

0

VextIdt + ES. (2.33)

The left integral is the power that must be supplied
to change the cavity inductance. This power supplies
the slab energy, both magnetic and thermal, energy
delivered to the external circuitry, and increases in
the magnetic energy stored in the cavity.

3. Problems of Constant

Conductivity, Stationary

Slabs

In this secion, the solution of several problems,
where the conductivity is constant and the slabs are
stationary and of infinite extent in the x-direction
will be presented. In the first example, no external
circuitry is employed. To the author’s knowledge, this
is the only example of those treated here for which
a closed-form solution has been obtained previously
[10]. The remaining problems have external circuitry
attached to the slabs and serve mainly as examples in
management of the boundary conditions. Solutions in
this section and in Sec. 5, where the slabs move, are
obtained by Laplace transform methods. The Table of

Laplace Transforms by Roberts and Kaufman [11] and
The Handbook of Mathematical Functions edited by
Abramowitz and Stegun [12] have been found to be
quite useful.

3.1. No External Circuitry

In this case, the initial slab separation, 2x0, is
constant and the flux in the cavity is given by

φcav = 2x0lB(0, t).

There is no external potential, Vext, in Eq. (2.26).
Equations (2.25) and (2.26) are then rewritten, with
appropriate initial conditions, as follows:

∂B

∂t
=

1

µσ

∂2B

∂x2
, (3.1)

−2x0l
dB(0, t)

dt
+

2l

µσ

(

∂B

∂x

)

0

= 0, (3.2)

B(x, 0) = 0, (3.3)

B(0, 0) = B0, (3.4)

B(∞, t) = 0. (3.5)

According to Eqs. (3.3) and (3.4), the initial magnetic
field, B0, resides only in the cavity between the slabs.
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From Eq. (2.11), it follows that an initial total current
I0 of magnitude −wB0/µ flows on the inner slab
surfaces.

When the current I is used as the dependent
variable, it is normally assumed to be positive. In this
example, the magnetic field is taken as the dependent
variable and the sign of the fields will be that of B0.
No confusion should arise as long as it is recognized
that the signs of the current densities, electric fields,
and total current, if needed, must carry signs opposite
to that of B0.

Before solving Eqs. (3.1)–(3.5), it should be pointed
out that the boundary condition, Eq. (3.2), is
equivalent to stating that the rate at which magnetic
energy leaves the cavity is given by the Poynting flux
into the cavity walls. The magnetic energy in the
cavity is given by

εcav =
B2

0(0, t)

2µ
· 2x0lw

and its rate of leakage is then

dεcav

dt
=

B0(0, t)

µ

∂B(0, t)

∂t
· 2x0lw.

The Poynting flux into the two walls, 2lw(EH)0,
from Eq. (2.8), is then

(EH)0 · 2lw =
1

µσ

(

∂B

∂x

)

0

· B(0, t)

µ
· 2lw.

Equating these two expressions leads to Eq. (3.2).
To solve Eqs. (3.1)–(3.5), let β(x, s) be the Laplace

transform of B(x, t):

β(x, s) =

∞
∫

0

e−stB(x, t)dt. (3.6)

Multiplication of Eq. (3.1) by e−st followed by time
integration yields

B(x, t)e−st
∣

∣

∣

∞

0
+s

∞
∫

0

e−stB(x, t)dt

=
1

µσ

d2

dx2

∞
∫

0

B(x, t)e−stdt.

Using Eq. (3.3), the following expression is obtained

d2β

dx2
= µσsβ. (3.7)

Multiplication of Eq. (3.2) by e−st followed by time
integration yields

− 2x0l



B(0, t)e−st

∣

∣

∣

∣

∞

0

+s

∞
∫

0

B(0, t)e−stdt





+
2l

µσ

d

dx

∞
∫

0

B(x, t)e−stdt

∣

∣

∣

∣

x=0

= 0. (3.8)

Thus, with Eq. (3.4), the inner boundary condition
becomes

1

µσx0

(

dβ

dx

)

0

− sβ(0, s) + B0 = 0. (3.9)

Eq. (3.5) yields the result that β(∞, s) = 0. The
solution to Eq. (3.7) satisfying this condition is

β(x, s) = A(s)e−x
√

µσs. (3.10)

Substitution of Eq. (3.10) into Eq. (3.9) allows one to
calculate A(s), so that the solution for β(x, s) becomes

β(x, s) =
B0 exp(−s

√
µσs)

s +
1

x0

√

s

µσ

. (3.11)

Thus, the solution for B(x, t) is given by the inverse
transform of β(x, s):

B(x, t) = L−1[β(x, s)]

=
B0

2πi

∫

Br

exp(st − x
√

µσs)

s +
1

x0

√

s

µσ

. (3.12)

Before setting down the solution to this integral,
expressions for the flux will be derived first. The flux
in the cavity is given by 2x0lB(0, t). That in the two

slabs is given by 2l
∞
∫

0

B(x, t)dx. Expressions for the

flux, using these terms, follow from Eq. (3.12):

φcav = 2x0lB0
1

2πi

∫

Br

estds

s +
1

x0

√

s

µσ

, (3.13)

φslabs = 2lB0
1

2πi

∫

Br

estds

√
µσs

(

s +
1

x0

√

s

µσ

) . (3.14)

The appropriate inverse transforms for these terms
are given in Ref. 9 [Eqs. (28) and (30), p. 248]. The
solutions are:

B(x, t) = B0 exp

(

x

x0
+

t

µσx2
0

)

× Erfc

(

1

x0

√

t

µσ
+

x

2

√

µσ

t

)

, (3.15)

φcav = 2B0x0l exp

(

t

µσx2
0

)

× Erfc

(

1

x0

√

t

µσ

)

, (3.16)

φslabs = 2B0x0l

(

1 − exp

(

t

µσx2
0

))

× Erfc

(

1

x0

√

t

µσ

)

. (3.17)
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Fig. 3.1. Magnetic field diffusion from a cavity into
semi-infinite slabs. Total flux is conserved.

Equations (3.16) and (3.17) show that the total flux
in the cavity and slabs is conserved (equal to the initial
flux 2B0x0l), as it should be. Had the slab thickness,
λ, been finite, then, even though B(λ, t) = 0 the
space derivative there would not vanish. Flux would
leak out of this boundary according to Eq. (3.15) and
the total flux in the cavity and slabs would not be
conserved. Incidentally, that flux is conserved may
be shown directly without obtaining the complete
solutions of Eqs. (3.15)–(3.17). By simply adding Eqs.
(3.14) and (3.15), manipulation of the integrand leads
to an elementary transform that gives the total flux
as simply 2x0lB0, which is also the initial flux.

Equation (3.15) can be rewritten in terms of
normalized space and time parameters, z and τ :

z =
x

x0
, τ =

1

x0

√

t

µσ
, (3.18)

to yield

B(z, τ)

B0
= exp(z + τ2)Erfc

(

τ +
z

2τ

)

. (3.19)

Plots of B(z, τ)/B0 are given in Fig. 3.1 for both
cavity and slab positions for various values of τ by
using tabulated values of the complementary error
function.

Some ideas about the flux leakage rates may
be obtained as follows. Generally speaking, slab
conductors have conductivities of order 3 ÷ 5 ×
107 mho/m and the cavity has dimensions on the order
of some centimeters. Times of interest are usually in
the microsecond range. Letting σ = 4 × 107, x0 =
0.05 m, and t = 50 µs, it is found that τ = 0.02. From
Fig. 3.1, it can be seen that very little flux has leaked

out of the cavity at this time. If the cavity were only
2 cm wide (x0 = 0.01 m), than at a time of 200 µs, τ
would equal 0.2 and, thus, approximately 20 % of the
flux would have leaked into the slabs from the cavity.

The slab skin depth, Dsk, can also be obtained from
Fig. 3.1 in terms of the cavity fields. Since total flux
is conserved, 2x0B0 = (2x0 + 2Dsk)B, and

Dsk = x0

(

B0

B
− 1

)

.

For small values of time, expansion of Eq. (3.19)
shows that B(0, t)/B0 = 1 − 2τ/

√
π. For large values

of time, the asymptotic expansion, from Ref. 10
[Eq. (7.1.23), p. 298], is B(0, τ)/B0 = 1/τ

√
π. With

Eq. (3.18), the skin depth becomes

Dsk = 2

√

t

πµσ
,

when t is small and

Dsk = π

√

t

πµσ
,

when t is large.

3.2. External Inductance, L1

In this example, an external load of fixed inductance
L1 is connected across the slab outputs, such as
shown in Fig. 1.2. The external potential across this
inductance is given by

d

dt
(L1I) = L1

dI

dt
. (3.20)

Here, I is the total current flowing through the
slabs and external circuit. The equations are again
formulated in terms of magnetic fields. Using
Eq. (2.11), the external potential becomes

VL1
= Vext = −wL1

µ

dB(0, t)

dt
. (3.21)

Substitution of this expression into Eq. (2.26) gives

− 2x0l
dB(0, t)

dt
+

2l

µσ

(

∂B

∂x

)

0

− wL1

µ

dB(0, t)

dt
= 0. (3.22)

This equation replaces Eq. (3.2) of the previous
example for the inner slab boundary condition. The
other equations of the set, Eqs. (3.1)–(3.5), remain the
same. The solution to the problem proceeds exactly as
before except for calculation of the coefficient A(s) in
Eq. (3.10), which is now obtained from Eq. (3.22). The
solution for A(s) differs only in that the parameter
1/µσx0 is changed. Previously, it was obtained from
Eq. (3.8), from the ratio of the terms 2l/µσ and 2x0l.
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In this example, it is obtained from the ratio of 2l/µσ
and (2x0l+wL1/µ). Noting that the cavity inductance
is L0 = 2µx0l/w the following solutions for A(s) and
B(x, t) can be obtained:

A(s) =
B0

s +
L0

L1 + L0

1

x0

√

s

µσ

(3.23)

and

B(x, t) =
B0

2πi

∫

Br

exp(st −√
µσsx)

s +
L0

L1 + L0

1

x0

√

s

µσ

ds. (3.24)

The solutions, Eqs. (3.15)–(3.17), obtained from the
preceding example may have been obtained directly by
the replacement of x0 by x0[(L0 + L1)/L0]. Thus, the
normalized solutions, Eq. (3.19), can be used for the
slab fields (and the cavity field, z = 0), by setting

z =
x

x0(L0 + L1)/L0
,

τ =

√

t/µσ

x0(L0 + L1)/L0
.

(3.25)

It is seen from Eq. (3.25) that the addition of the
external inductance to the cavity has the effect of
lowering τ . Thus, the flux leakage rate from the cavity
is reduced by the addition of an external inductance.
This is not surprising since the external inductance
carries the same current as the slabs and therefore
functions as a ballast.

Finally, it is noted that the conservation of flux
in the system must now include that in the external
inductance in addition to that in the cavity and slabs.
Using the proportionality of current and cavity field,
the initial flux in the system is

φ0 = (L0 + L1)
w

µ
B0. (3.26)

At later times, the flux in the cavity, slabs, and
external inductance is

φ(t) = 2lx0B(0, t) + 2l

∞
∫

0

B(x, t)dx

+
w

µ
L1B(0, t). (3.27)

Using Eqs. (3.13) and (3.14) and replacing x0 with
x0[(L0 + L1)/L0], the following is obtained:

φ(t) = B0

(

2x0l +
wL1

µ

)

× 1

2πi

∫

Br

est

s +
L0

L1 + L0

1

x0

√

s

µσ

ds + 2B0l

× 1

2πi

∫

Br

est

(

s +
L0

L1 + L0

1

x0

√

s

µσ

)

√
µσs

ds

=
B0w

µ
· 1

2πi

∫

Br

est

s +
L0

L1 + L0

1

x0

√

s

µσ

ds

×
(

L0 + L1 +
2lµx0

x0w
√

µσs

)

,

φ(t) =
B0w

µ
(L0 + L1) ·

1

2πi

∫

Br

est

s
ds

=
B0w

µ
(L0 + L1).

(3.28)

As is will known, the value of the integral along
the Bromwich contour is 2πi. Thus, the total flux at
any time equals the initial flux of Eq. (3.26). With
this result, the skin depth can be obtained from Eq.
(3.27), since the integral term is equal to 2DskB(0, t):

Dsk = x0

(

B0

B(0, t)
− 1

)

L0 + L1

L1
.

Equations (3.19) and (3.25) show that the skin
depth for both very small and very large values of
time are the same as those given in Sec. 3.1, where
there was no external inductance. However, since the
values of τ are smaller in the present case, the cavity
field has not decreased as much in the same time.

3.3. External Inductance and

Resistance

Figure 1.2 again serves as a schematic for
this situation, with the conducting slabs taken as
stationary and of infinite thickness. As before, an
initial surface current I0 of magnitude – B0(w/µ) flows
through the slabs and external circuitry, which now
includes the resistance R in addition to the inductance
L1 of the previous example.

The term Vext of Eq. (2.24) must now include the IR
potential drop as well as the term L1(dI/dt) used in
the previous example. Again, I is eliminated through
the use of Eq. (2.11) and the boundary condition is
written in terms of the cavity field, B(0, t). Equation
(2.24) becomes

− 2x0l
dB(0, t)

dt
+

2l

µσ

(

∂B

∂x

)

0

− R
w

µ
B(0, t) − w

µ
L1

dB(0, t)

dt
= 0. (3.29)

Using the expression L0 = 2x0µl/w for the cavity
inductance, the above equation can be rearranged as
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follows:

− dB(0, t)

dt
− R

L0 + L1
B(0, t)

+
L0

L0 + L1
· 1

µσx0

(

∂B

∂x

)

0

= 0. (3.30)

Except for Eq. (3.2), which this equation replaces,
the set of Eqs. (3.1)–(3.5) remains the same. The
solution proceeds as in Sec. 3.1 and A(s) is determined
from the transform of Eq. (3.30). This transform is
obtained as before, by multiplying the equations by
e−st and integrating over time:

−
∞
∫

0

e−st dB(0, t)

dt
dt − R

L0 + L1

∞
∫

0

e−stB(0, t)dt

+
L0

L1 + L0
· 1

µσx0

∂

∂x

∞
∫

0

B(x, t)e−stdt

∣

∣

∣

∣

0

= 0. (3.31)

The result is, with Eq. (3.4),

L0

L0 + L1
· 1

µσx0

(

∂β

∂x

)

0

= β

(

s +
R

L0 + L1

)

− B0. (3.32)

Substitution of Eq. (3.10) into this expression allows
one to determine A(s):

A(s) =
B0

s +
R

L0 + L1
+

L0

L0 + L1

1

x0

√

s

µσ

. (3.33)

The solution for B(x, t) then becomes

B(x, t) = L−1[A(s) exp(−√
µσsx)]

=
B0

2πi

∫

Br

exp(st − x
√

µσs)ds

s +
R

L0 + L1
+

L0

L0 + L1

1

x0

√

s

µσ

. (3.34)

When R = 0, note that this equation correctly
reduces to Eq. (3.24), which is the solution for the
case when the external load is purely inductive.

Usually, the total current flowing in the system is
of most interest, which can be written in terms of the
cavity field, B(0, t):

I(t) = I0
1

2πi

×
∫

Br

est

s +
R

L0 + L1
+

L0

L0 + L1

1

x0

√

s

µσ

ds. (3.35)

Equation (3.35) can be reduced to an integral
form as follows. Note that the function whose inverse

transform that is now sought is the reciprocal of a
quadratic function in s1/2:

g(s1/2)

=
I0

(s1/2)2 +
R

L0 + L1
+

L0

L0 + L1

(s1/2)

x0
√

µσ

. (3.36)

According to Ref. 9 [Eq. (29), p. 171], if f(u) is the
inverse transform of g(s), then the inverse transform
of g(s1/2) is given as follows:

L−1[g(s1/2)] =
1

2
√

πt3

∞
∫

0

ue−u2/4tf(u)du. (3.37)

The function f(u) is now the inverse transform of a
simple rational expression:

f(u) =
I0

2πi

∫

Br

exp(su)

s2 + αs + β
ds, (3.38)

where

α =
L0

L0 + L1

1

x0
√

µσ
,

β =
R

L0 + L1
.

(3.39)

The roots of the quadratic s2 + αs + β for typical
plate generators will be complex. For example, if L0 =
0.09 µH, L1 = 0.01 µH, x0 = 0.05 m, σ = 107 mho/m,
and R = 0.001 Ω, then α = 5 and β = 104 and
the discriminant α2/4 − β is negative. From Ref. 9
[Eq. (152), p. 199], one obtains

f(u) = I0 exp(−αu/2)

sin

[

u

(

β − α2

4

)1/2
]

(

β − α2

4

)1/2
. (3.40)

From Eq. (3.37), one obtains

I(t) =
I0

2t3/2

[

π

(

β − α2

4

)]1/2

×
∞
∫

0

udu exp(−u2/4t − (αu/2))

× sin

[

u

(

β − α2

4

)1/2
]

. (3.41)

Note that if the slabs were perfectly conducting, σ →
∞, then α = 0. Under these conditions, Eq. (3.41)
reduces to

I(t) =
I0

2t3/2
√

βπ

∞
∫

0

udue−u2/4t sin
√

βu,

for σ = ∞. (3.42)
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Integrating by parts and with the help of Ref. 10
[Eq. (7.4.6), p. 302], this expression is shown to reduce
to the following form:

I(t) = I0e
−βt ≡ I0e

−Rt/(L0+L1),

for σ = ∞. (3.43)

This is the elementary solution obtained for the
current decay in a circuit of resistance R and
inductance L0 + L1, as expected, since the perfect
conductivity of the slabs prevents field diffusion
into them and the cavity then behaves as a pure
inductance of value L0. Incidentally, Eq. (3.43) follows
immediately from Eq. (3.35) when the conductivity is
infinite.

Equation (3.41) can be expressed in terms of
tabulated functions as follows. For convenience, γ is
temporarily set equal to (β − α2/4)1/2 and Eq. (3.41)
is integrated by parts to give

I(t) =
t0

γ
√

πt

∞
∫

0

exp(−(u2/4t) − (αu/2))du

×
(

−α

2
sin γu + γ cos γu

)

(3.44)

From Ref. 9 [Eq. (7.4.2), p. 302], one obtains

∞
∫

0

exp(−(ay2 + 2by))dy =
1

2

√

π

a
eb2/aErfc

(

b√
a

)

,

when Rla > 0. (3.45)

Upon replacing sin(γu) and cos(γu) with their
exponential equivalent expressions, Eq. (3.44) can be
put in the form of two definite integrals having the
form of Eq. (3.45), with complex coefficients, b. Thus,

I(t) =
I0

2γ

[(

γ +
iα

2

)

et[(α/2)−iγ]2

× Erfc
√

t
(α

2
− iγ

)

+ C.C.

]

. (3.46)

This reduces to the following:

I(t) =
I0

2γ
√

t

[

ze−z2

Erfc(−iz) + C.C.
]

, (3.47)

where

z =
√

t

(

γ +
αi

2

)

≡
[

(

β − α2

4

)1/2

+ i
α

2

]

√
t. (3.48)

From Ref. 10 [Eq. (7.1.3), p. 297], note first that
Eq. (3.47) can be expressed in terms of a function w(z)
related to error functions with complex arguments.

This function is also tabulated in Ref. 10 [Table 7.9,
p. 325]. Finally, the solution is

I(t) =
I0

γ
√

t
Rl[zw(z)]. (3.49)

If the slabs are perfectly conducting, α = 0, γ =
√

β,
and z =

√
βt is real. From Ref. 10 [Eq. (7.1.2), p. 297],

the result given in Eq. (3.43) is obtained again for this
limiting case.

It can be shown that when α2 ¿ β, i.e., the slabs
are very good conductors, then the diffusion effects are
small and I(t), given by Eq. (3.49), is approximately
that given in Eq. (3.43). When α2 is comparable
to β (poor slab conductivity or slab dimensions are
very small), then diffusion effects perturb seriously
the lumped parameter solution, Eq. (3.43). As an
example, consider the following parameters: β = 104,
α = 120, and t = 10−4τ . The lumped parameter
solution of Eq. (3.43) becomes

I(τ)

I0
= e−τ . (3.50)

The solution with diffusion taken into account reduces
to

I(τ)

I0
= Rl

×
{

1

0.8
(0.8 + 0.6i)w[

√
τ(0.8 + 0.6i)]

}

. (3.51)

These two solutions, the latter obtained from the
Tables in Ref. 10, are compared in Fig. 3.2 together
with a few additional points calculated from Eq. (3.49)
that show how the solution approaches the lumped
parameter solutions as the slab conductivity increases.

3.4. External Capacitance

Figure 1.2 serves as a sketch to illustrate this
example. As before, the slabs are stationary and are
of infinite extent in the x-direction. Here, the external
load is a capacitor with capacitance C and initial
voltage V0. Unlike the preceding examples, current
starts to flow through the system only after C is
switched into the circuit at time t = 0. The external
potential, Vext, of Eq. (3.36) becomes

Vext = V0 +
1

C

t
∫

0

Idt. (3.52)

Replacing the external current by the cavity field,
the boundary condition, Eq. (2.26), which replaces
Eq. (3.2) of example (3.1), becomes

− 2x0l
dB(0, t)

dt
+

2l

µσ

(

∂B

∂x

)

0

+ V0 −
w

µC

t
∫

0

B(0, t)dt = 0. (3.53)
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Fig. 3.2. Current decay in an external circuit
connected to a slab-bounded cavity showing the
influence of diffusion. The upper curve is a lumped
parameter solution without diffusion.

Equation (3.4) is simplified since the initial cavity
field is zero. With this condition, the Laplace
transform of Eq. (3.53) becomes (with the help of Ref.
9 [Eq. (41), p. 7, n = 1]

− 2x0slβ(s, 0) +
2l

µσ

(

∂β

∂x

)

0

+
V0

s
− wβ(0, s)

µCs
= 0. (3.54)

As before, from Eqs. (3.1),(3.3), and (3.5), the
acceptable solution for β(x, s) is given by Eq. (3.10),
where A(s) is now determined from Eq. (3.54), and
β(x, t) becomes

β(x, s) =
V0e

−
√

µσsx

2x0ls2 +
2l

√
µσ

s3/2 +
w

µC

. (3.55)

B(x, t) is then

B(x, t) = L−1[β(x, s)]

=
V0

2πi

∫

Br

exp(st − x
√

µσs)

2x0ls2 +
2l

√
µσ

s3/2 +
w

µC

ds. (3.56)

The expression for the total current in the system,
I(t) = −(w/µ)B(0, t), becomes, with use of the
expression L0 = 2µx0l/w,

I(t) = −V0

L0

× 1

2πi

∫

Br

est

s2 +
1

x0
√

µσ
s3/2 +

1

L0C

ds. (3.57)

It is of interest to compare this result with the
corresponding lumped parameter solution with a
resistance R in the circuit:

I(t) = −V0

L0

1

2πi

∫

Br

est

s2 +
R

L0
s +

1

L0C

ds. (3.58)

The well-known solution of Eq. (3.58) is

I(t) = − V0

L0ω
e−(R/2L0)t sin ωt, (3.59)

where

ω =

[

1

L0C
−

(

R

2L0

)2
]1/2

.

Equations (3.57) and (3.58) become identical when the
circuits are lossless, σ = ∞ and R = 0 the solution,
from Eq. (3.59), reduces to

I(t) = −V0

√

C

L0
sin ωt, (3.60)

where
ω =

√

L0C, where σ = ∞.

When the conductivity is large, the resistive terms
in Eq. (3.57) should be small and the poles of s are
in magnitude close to ω. Upon comparison with Eq.
(3.58), it is expected that the term ω1/2/x0

√
µσ will

be somewhat comparable to the term R/L0, where
R is an effective resistance for the slab. If the slab
resistance is expressed in terms of an effective skin
depth, τeff , then it can be shown that

τeff = (µσω)−1/2. (3.61)

This expression agrees with the classical skin depth
for an oscillating boundary field of frequency ω within
a factor

√
2.

Equation (3.57) can be expressed analytically, but
the solution requires that the roots be obtained
in terms of the quartic expression (in s1/2) in the
denominator of the integral. The algebra required to
do this is extensive and it has not been done. However,
some solutions that were obtained by numerical
techniques will be given in future papers.

4. Lumped Parameter Solution

Flux compression problems are usually solved by
using of lumped circuit parameters. Diffusion effects
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Fig. 4.1. Two ways of producing flux in a conductor-
bounded cavity: (a) by discharging a current directly
through the conductors and (b) from an external
magnetic field source.

are approximated by adding external resistances and
inductances that are treated as loss terms. A fairly
detailed account of this treatment may be found in
Ref. 1.

Some of these solutions for the plate generator
will now be considered. There are two objectives to
this study. The first objective is to introduce the
techniques required to obtain the boundary equations
for moving slabs. These techniques will also be applied
to the diffusion treatment of moving slabs given in
Sec. 5.

The second objective is to compare solutions to the
plate generator problem when the initial cavity flux is
obtained from (a) an initial current flowing through
the system or when it is obtained from (b) a magnetic
field derived from external sources. The solutions
differ somewhat and the difference also carries over to
the diffusion treatment of the same problems except
with moving slabs, as will be pointed out in Sec. 5.

4.1. Initial Flux and Circuit

Equations

Figure 4.1 shows the two methods of supplying
initial flux to the slab cavity. In both cases, there
is an external load consisting of an inductance L1

and resistance R. In Fig. 4.1a, the initial flux is
produced by an initial current, I0, flowing through the
system. The magnetic field arising from this current,

−µI0/w, is confined to the slab cavity. In Fig. 4.1b,
the initial field, B10, is impressed on the cavity from
an external source. In the diffusion equation solutions
to be discussed in Sec. 5, the source must be of infinite
extent to be consistent with Maxwell’s equations.
No initial currents flow in this system. The circuit
equations and solutions for both cases are presented
in parallel below.

As the slabs start to move inwards, the flux is
compressed. In case (a), I0 increases. In case (b), a
current starts to flow through the systems. The circuit
equations are obtained from Eq. (2.26). For both cases,
the external potentials and flux terms are given by

Vext = IR + L1
dI

dt
, (4.1)

φ = 2xlBcavity. (4.2)

For case (a), the cavity field arises solely from the
current. In case (b), it arises not only from the current
but from the externally impressed field B10. Thus,

φ = −2xlµI

w
L = −I, case (a), (4.3)

φ = 2xl

(

B10 −
µI

w

)

= 2xlB10 − LI,

case (b). (4.4)

Combining these equations with Eq. (4.1), the
differential equations for the two cases can be found
by using Eq. (2.26):

d

dt
(LI) + IR + L1

dI

dt
= 0, I(0) = I0,

case(a), (4.5)

d

dt
(LI − 2xlB10) + IR + L1

dI

dt
= 0, I(0) = 0,

case(b), (4.6)

Here, diffusion effects must be lumped in with the
resistive term, IR.

For purposes of simplification, the initial magnetic
field B10 will be replaced by an effective initial current
I10:

I10 = −wB10

µ
. (4.7)

Equations (4.5) and (4.6) can now be consolidated

d

dt
(L + L1)I + IR = 0, I(0) = I0,

case(a), (4.8)

d

dt
[(L + L1)(I + I10)] + IR = 0, I(0) = 0,

case(b), (4.9)

Although Eq. (4.8) was derived for the slab
geometry, it is used in practice for variable
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inductances, L, of a general nature. If R = 0,
both equations show immediately that total flux is
conserved. If R and L are given functions of time,
then both Eqs. (4.8) and (4.9) may be reduced to
quadrature as follows. From Eq. (4.8), one obtains

d

dt
[(L + L1)I] + (L + L1)I

R

L + L1
= 0,

I(0) = 0, case(a). (4.10)

The solution of this equation is

I(t) =
L0 + L1

L + L1
I0 exp



−
t

∫

0

R

L + L1
dτ



 ,

case(a) (4.11)

By adding I10R to both sides of Eq. (4.9), one obtains

d

dt
[(L + L1)(I + I10)]

+ (L + L1)(I + I10)
R

L + L1
= I10R,

I(0) = 0, case(b). (4.12)

The solution of this equation is

I + I10 =
L0 + L1

L + L1
I10 exp



−
t

∫

0

R

L + L1
dτ





×



1 +
1

L0 + L1

t
∫

0

Rdτ exp





τ
∫

0

R

L + L1
dz







 ,

case(b). (4.13)

For case (a), the cavity field is proportional to the
current I flowing through the system. For case (b), the
cavity field is proportional to I+I10, although only the
current I flows in the external circuit. It is seen that
the cavity field amplification for case (b) exceeds that
for case (a) by the factor included in the bracketed
expression of Eq. (4.13). If there is no resistance in the
circuit, the cavity field amplifications are the same. An
analogous relationship will be noted in Sec. 5, where
the corresponding problem is treated by diffusion
methods. Here, one of the problems considered is
the determination of the maximum possible field
amplification within a cavity (no external inductance).
It also turns out that somewhat higher amplifications
arise when the initial flux is supplied by an external
field instead of from an initial current. The reason for
this is clearly associated with the larger resistive losses
that occur when the fields arise solely from currents.
(There is no resistive loss penalty associated with the
initial magnetic field produced by an external source.)

The situation is different for powering the external
load, L1. Here, there is interest only in the external

current, I. For the lossless case, R = 0, the current
I for case (a) exceeds that for case (b) and thus
more energy will be delivered to L1 for this case. The
explanation for this is that in case (a), both cavity and
load, L1, contain initial flux, but in case (b), only the
cavity has initial flux.

4.2. Constant Slab Velocity Solution

This section continues by integrating Eq. (4.11) for
the special case where R is constant and the slab plates
move with constant velocity v. The slabs collide at
time τ = x0/v, usually called the generator ”burnout
time”, because flux compression is then finished. The
generator inductance for this case is:

L =
µl

w
2(x0 − vt) = L0

(

1 − t

τ

)

. (4.14)

Substitution of this expression into Eq. (4.11) gives
for the current ratio

I

I0
=

1
(

1 − L0

L0 + L1

t

τ

)1−Rτ/L0

. (4.15)

The maximum current multiplication occurs at t = τ
and is

IM

I0
=

(

L0 + L1

L1

)1−Rτ/L0

. (4.16)

When R = 0, Eq. (4.16) shows that flux is conserved.
When R 6= 0, Eq. (4.16) shows that maximum current
amplification is reduced and that if Rτ/L0 = 1, there
is no current amplification. If Rτ/L0 > 1, the initial
current actually decays. A somewhat similar behavior
will be exhibited in the analogous diffusion equation
solutions. However, note that when the load L1 gets
very small, a legitimate situation in the lumped circuit
model, the peak current gets very large when Rτ/L0 <
1 and, conversely, gets very small when Rτ/L0 < 1.
This anomaly disappears when diffusion is taken into
account.

4.3. Constant Slab Velocity;

Approximate Diffusion Term

Diffusion into the plates can be approximated,
within the framework of the lumped parameter model,
by adding a skin layer inductance term that varies as
the square root of time:

L(t) = L0

[

1 − t

τ
+ 2a

(

t

τ

)1/2
]

. (4.17)

Here, a is the ratio of skin inductance at burnout
to the initial cavity inductance, or equivalently, the
skin depth at burnout divided by the initial plate
separation.
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Fig. 4.2. Current gains for a plate generator with
resistance. An empirical diffusion term was used for
solid curve system.

When the load is a pure resistance, R, i.e., when
L1 = 0, and the flux is only from a current, I, the
equation for the current is

d

dt
(L(t)I) + IR = 0, I(0) = I0. (4.18)

The solution to this equation is

I(t)

I0
=

∣

∣

∣

∣

∣

1 − T 1/2(
√

a2 + 1 − a)

1 + T 1/2(
√

a2 + 1 + a)

∣

∣

∣

∣

∣

Rτa/L0

√
a2+1

× 1
[

1 − T + 2aT 1/2
]1−Rτ/L0

. (4.19)

Here, a reduced time variable T = t/τ , which at
burnout equals one, was used.

The current multiplication to burnout (T = 1)
for the case where RT/L0 = 0.5 and a = 0.1
is plotted in Fig. 4.2 (solid curve). Note form
Eq. (4.17) that the initial inductance is L0, which
at burnout is 0.2L0. For comparison purposes, the
solution for the corresponding problem with a fixed
load inductance, whose solution is given by Eq. (4.15),
will be presented. In this case, to make the initial
and final inductances the same, L0 of Eq. (4.15)
must be taken as 0.8L0 and L1 = 0.2L0 used in
Eq. (4.17). It will be noted that the final current
amplification is slightly smaller in this case. It is
interesting to note that the current actually decreases
slightly near the start of compression for the diffusion
approximation solution. This happens because the
inductance actually increases slightly at early times

because the term with the square root of time initially
overrides the term linear in time.

5. Moving Slabs, Constant

Conductivity

In this section, the solutions of several problems
where semi-infinite slabs have constant conductivity
and move together with constant velocity will be
presented. In the first example there is no external
load, however, in the remaining examples there are
external loads in the circuit. In all cases, an initial
current I0 flows through the circuits. The results
obtained for the first problem will be compared with
previously published solutions for the case with no
external load and with initial flux supplied from an
external magnetic field source.

5.1. Summary of Previous Work

Paton and Millar [5] obtained the first solution to
the moving slab diffusion problem and the subsequent
analysis of different problems presented in this section
will parallel much of their work. They considered a
cavity of total width x0, filled with an initial magnetic
field B0. One slab was stationary and the other slab
moved towards the fixed slab with constant velocity
v. Both slabs had fixed conductivity, σ. One of their
major conclusions was that the maximum magnetic
field multiplication, BM/B0, can be expressed in terms
of a ”magnetic Reynolds” number, R, as follows:

R = µσx0v (5.1)

and
BM

B0
= 1 +

R

8
+

√

R

π
. (5.2)

Lehner, Linhart, and Somon [6] published a
solution somewhat later which was more amenable
to numerical calculation, particularly if the slab walls
were of finite thickness instead of being infinitely thick
as treated by Paton and Millar and, for the most
part, in the analytic solutions given in this paper.
They gave the solution for the maximum magnetic
field compression, BM/B0, for the following problem.
Two infinite slabs initially separated by a distance 2x0

contain an initial magnetic field B0. Both slabs move
toward each other, each with a constant velocity, v.
The maximum compression is again obtained in terms
of the magnetic Reynolds number, R:

R = µσx0v (5.3)

and
BM

B0
= 1 +

R

2
+ 2

√

R

π
. (5.4)

It will be noted that the Reynolds number of Eq.
(5.3) is defined in terms of half the cavity width, x0,
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and half the relative plate velocity, v. Had R been
defined in terms of total cavity width, 2x0, and total
relative velocity, 2v, as in Eq. (5.1), then R in Eq. (5.4)
would be reduced by a factor of four. The maximum
compression predicted by Eq. (5.4) then would be the
same as that given by Eq. (5.2).

Bichenkov [7] treated the same problem with initial
flux being supplied by an initial current instead of an
external magnetic field. This is the example treated
in Section 5.2 of this report. The limiting compression
ratio given is equivalent to our Eq. (5.25), although
Bichenkov uses a parameter that is the inverse square
of our Reynold’s number. However, no external loads
were attached to the generator, which is the point of
departure for most of the examples treated here.

5.2. Initial Current Source, No

External Load

The slab boundary condition is again given by Eq.
(2.26). Here, Vext = 0 and the general flux term can
be written as follows:

φ = 2l(x0 − vt)(B + B10). (5.5)

Here, B10 is an external impressed field and B is
the field that arises from a current I = −wB/µ.
The problem summarized in Sec. 5.1 is solved using
this relation to determine the boundary condition. In
that case, the initial cavity field is B(0, 0) = 0, since
there is no initial current. The initial field distribution
in the slabs, however, is given by B(x, 0) = B10.
Equation (5.5) is also applicable to the more general
problem where both an externally impressed field and
an initial current are present. However, the case that
will be considered here is that where an initial current
I0 = −wB0/µ flows in the system. Thus, B10 = 0. In
this problem, interest is mainly focused on magnetic
fields and therefore the equations will be expressed in
terms of B, although the total current flowing can be
obtained from the cavity field, B(0, t). In this case,
the set of Eqs. (3.1)–(3.5) apply except the boundary
condition, Eq. (3.2), which is now replaced by

− d

dt
[2l(x0 − vt)B(0, t)] +

2l

µσ

(

∂B

∂x

)

0

= 0. (5.6)

Equation (5.6) can be expressed in term of the
generator burnout time, τ , of Eq. (4.14) to

− d

dt

[(

1 − t

τ

)

B(0, t)

]

+
1

µσx0

(

∂B

∂x

)

0

= 0. (5.7)

Upon differentiating, the boundary condition
becomes

− dB(0, t)

dt
+

B(0, t)

τ

+
t

τ

dB(0, t)

dt
+

1

µσx0

(

∂B

∂x

)

0

= 0. (5.8)

The Laplace transform solutions are found by the
same method that was used in Sec. 3.1 by using Eqs.
(3.1),(3.3), and (3.5):

β(x, s) = A(s) exp(−x
√

µσs). (5.9)

To proceed further, Eq. (5.8) is transformed:

−
∞
∫

0

dB(0, t)

dt
e−stdt +

∞
∫

0

B(0, t)

τ
e−stdt

+
1

τ

∞
∫

0

te−st dB(0, t)

dt
dt

+
1

µσx0

∂

∂x

∞
∫

0

Be−stdt

∣

∣

∣

∣

0

= 0. (5.10)

From Ref. ([Eq. (30), p. 6, n = 1], the transform of
the third term is given by

1

τ

∞
∫

0

te−st dB(0, t)

dt
dt = −1

τ

d

ds
(sβ(x, s))

∣

∣

∣

∣

x=0

. (5.11)

With the use of this relation and the initial condition,
B(0, 0) = B0, Eq. (5.10) becomes

B0 − sβ(0, s) − s

τ

(

dβ

ds

)

x=0

+
1

µσx0

(

dβ

dx

)

0

= 0. (5.12)

Substitution of Eq. (5.9) into Eq. (5.12) leads to the
following differential equations for A(s):

A(s)

ds
+ A

(

τ +
τ

x0
√

µσs

)

=
B0τ

s
. (5.13)

Equation (5.13) can be written as

d

ds

[

A(s) exp

(

τs +
2τs1/2

x0
√

µσ

)]

=
B0τ

s
exp

(

τs +
2τs1/2

x0
√

µσ

)

. (5.14)

The right-hand expression contains singularities at
s = 0. Paton and Millar [5] subtract terms from both
sides of their analogous equation to obtain a solution
regular at s = 0. This will not be done here because,
as it turns out, these terms do not contribute to the
solution. The expression for A(s) then becomes

A(s) = exp

(

−τs − 2τs1/2

x0
√

µσ

)

×






k +

s
∫

(0)

B0τ

ξ
exp

(

τξ +
2τξ1/2

x0
√

µσ

)

dξ






. (5.15)
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The second term of Eq. (5.15) is rewritten as

s
∫

(0)

B0τ

ξ
dξe−τ(s−ξ) − 2τ

x0
√

µσ
(s1/2 − ξ1/2).

Replacing the integration variable ξ with ws, the
limits on w then become 0 and 1. The bracketed
expression then becomes

1
∫

(0)

B0τ
dw

w
exp

[

−τs(1 − w) − 2τs1/2

x0
√

µσ
(1 − w1/2)

]

.

The complete expression for is

β(x, t) = e−
√

µσs

[

ke−τs − 2τs1/2

x0
√

µσ

+

1
∫

(0)

B0τ

w
dw exp

[

−τs(1 − w)

− 2τs1/2

x0
√

µσ
(1 − w1/2)

]]

(5.16)

From Ref. 9 [Eq. (66), p. 175], the integral of
a transform over a parametric variable has as its
inverse the integral of the inverse transform over the
same parametric variable. Using this relation with Eq.
(5.16), the following expression can be written for
B(x, t):

B(x, t) =
1

2πi

∫

Br

kds exp

[

s(t − τ) − 2τs1/2

x0
√

µσ

− x
√

µσs

]

+

1
∫

(0)

dw

w
x

∫

Br

B0τds exp

[

s[t − τ(1 − w)]

− 2τs1/2

x0
√

µσ
(1 − w1/2) − x

√
µσs

]

. (5.17)

At this point, use is made of the well-known result
that the transform of a function g(s)e−as is the
transform of g(s) delayed in time by α, or

L−1[g(s)e−αs] =

{

0, t < α,

f(t − α), t ≥ α.
(5.18)

The first term in Eq. (5.18) does not contribute to
the solution since only times t ≤ τ are of interest and
according to Eq. (5.17), the inverse transform of the
remaining integral is zero up to this time. It may be
remarked here that the various terms that should have
been added to Eq. (5.15) to make the expression A(s)
nonsingular at s = 0 all drop out for the same reason.
They, too, give rise to terms that contribute only for
t ≥ τ .

There remain for B(x, t) contributions only from the
second expression. These contributions exist only for
t ≥ τ(1 − w) or w ≥ 1 − t/τ . The solution for B(t, x)
is then

B(x, t) = B0τ

1
∫

1−t/τ

dw

w
L−1

{

e−s1/2

[

2τ

x0
√

µσ
(1−w1/2)

+ x
√

µσ

]}

t→t−τ(1−w)

. (5.19)

From Ref. 9, [Eq. (14), p. 246],

B(x, t) =
B0τ

2
√

π

t
∫

1−t/τ

dw

w

×

2τ

x0
√

µσ
(1 − w1/2) + x

√
µσ

[t − τ(1 − w)]3/2

× exp









−

2τ

x0
√

µσ
(1 − w1/2) + x

√
µσ

4[t − τ(1 − w)]









. (5.20)

The main interest is in the cavity field, which also
gives the total current. Equation (5.20), at x = 0, with
the definition given below, reduces to

B(0, t) =
B0√
πR

1
∫

1−T

dw

w

1 − w1/2

[T − (1 − w)]3/2

× exp

(

− (1 − w1/2)2

R[T − (1 − w)]

)

, (5.21)

where

T =
t

τ
, R = µσvx0, v =

x0

τ
. (5.22)

At burnout, t = τ , T = 1 and Eq. (5.21) reduces to

B(0, t) =
B0√
πR

1
∫

1−T

dw
1 − w1/2

w5/2

× exp

(

− (1 − w1/2)2

Rw

)

, (5.23)

Upon substituting y = 1/
√

w − 1, Eq. (5.23)
becomes

B(0, τ)

B0
=

2√
πR

∞
∫

0

y(y + 1)e−y2/Rdy. (5.24)

This expression reduces to

B(0, τ)

B0
=

R

2
+

√

R

π
. (5.25)
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Equation (5.25) may be compared with Eq. (5.4),
which gives the limiting cavity field compression when
the initial flux is supplied from an external magnetic
field, B0. If the Reynolds number R is large, both
expressions tend to a limiting compression R/2. When
initial flux is supplied by an external field, even
with very small values of R, the final field cannot
be less than the initial field. Consequently, the final
compression cannot be less than one, as seen from Eq.
(5.4). However, when the initial flux is produced by
an initial current, as in this example, if R is small
enough, the current can dissipate to such an extent
that the final compression is less than unity. From Eq.
(5.25), it is found that the amplification is unity for
R = 2(1 + 1/π −

√

[1 + (1/w)]2 − 1) = 0.9186. If R is
greater than 0.9186, the final field will be amplified;
if it is less, the final field will be less than the initial
field. Equation (5.25) also readily yields the value of
the skin depth at burnout. Since all of the initial flux
now resides in the skin, 2lx0B0 = 2lDskB(τ) and
Dsk = x0B0/B(τ), or from Eq. (5.22),

Dsk =
x0

R

2
+

√

R

π

=
2

µσv + 2

√

µσv

πx0

.

This situation may be compared to that obtained
for the lumped parameter treatment. From Eq.
(4.16), it is clear that L0/Rτ (here, R is the plate
resistance) plays the role of a Reynolds number. Unless
L0/Rτ > 1, no amplification results. However, the
analogy breaks down when the two expressions for
the Reynolds number are equated. The effective skin
depth for plate resistance must be taken to be x0, half
the cavity width.

Equation (5.21) has been integrated numerically for
various values of R and T , and these are plotted in
Fig. 5.1. Curves of compression vs. 1−T are given for
the latter stages of compression (T from 0.92 to 1.0)
for values of R = 102, 103, 104, and 105. If the plates
were perfectly conducting and σ and R infinite, the
theoretical compression would be given by

B(0, T )

B0
=

1

1 − T
.

Inspection of Fig. 5.1 shows that most of the
compression occurs near burnout, T = 1, particularly
for large Reynolds numbers. Experimentally,
compression by the plates is normally achieved
by use of explosives. It is clear that a high degree of
simultaneity in explosive initiation and detonation
is called for if large compression ratios are to be
achieved. Further, the metal plates must be of
uniform thickness and density and must be carefully
aligned. These conditions are relaxed somewhat when
the plate generator is used to deliver energy to an
external cavity, the problem taken up in Sec. 5.3.

Fig. 5.1. Cavity field compression rartios for various
magnetic Reynolds numbers. Reduced times T from
burnout.

5.3. Initial Current Source, External

Load L1

The slab boundary condition for this case,
Eq. (2.26), now includes an external potential term,
L1dI/dt, which is cast in terms of the cavity field:

Vext = L1
dI

dt
= −w

µ
L1

dB(0, t)

dt
. (5.26)

Addition of this term to Eq. (5.6) gives as the
boundary condition for this example the following:

− d

dt

{(

2l(x0 − vt) +
w

µ
L1

)

B(0, t)

}

+
2l

µσ

(

∂B

∂x

)

0

= 0. (5.27)

Equation (5.27) can be written in terms of the cavity
inductance, L0, as follows:

− d

dt

[(

1 − t

τeff

)

B(0, t)

]

+
1

µσx0

L0

L0 + L1

(

∂B

∂x

)

0

= 0, (5.28)

where

τeff =
x0

v

L0 + L1

L0
= τ

L0 + L1

L0
. (5.29)

This equation is completely equivalent to Eq. (5.7)
except where the parameters τ and x0 occur. They
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Fig. 5.2. Cavity field compression ratios for various
magnetic Reynolds numbers with external Inductance

L1. 1 − Teff = 1 − 1

γ
· L0

L0 + L1
.

should be replaced by the quantities τeff and a, given
below:

a = x0
L0 + L1

L1
. (5.30)

In particular, Eqs. (5.21) and (5.22) can converted
directly:

B(0, t) =
B0√
πReff

1
∫

1−Teff

dw

w

1 − w1/2

[Teff − (1 − w)]3/2

× exp

(

− (1 − w1/2)2

Reff [Teff − (1 − w)]

)

, (5.31)

where

Reff = µσva = µσvx0
L0 + L1

L0
(5.32)

and

Teff =
t

τeff
. (5.33)

An immediate consequence of these equations is
that the maximum field multiplication is reduced
over that obtained when there is an external load.
At burnout, Teff = L0/(L0 + L1). Thus the lower
integration limit of Eq. (5.31) is L1/(L0 +L1), instead
of zero as is the case for Eq. (5.21).

Ratios B(T )/B0 are plotted against 1 − Teff for
various values of Reff in Fig. 5.2. Values were obtained
by numerical integration of Eq. (5.31), which, with
appropriate relabeling, is the same integral of Eq.
(5.21). For plate generators, L0 is usually only a few
tenths of a microhenry. Consequently, it is seldom
that external loads, L1, are small enough to make
the limiting compression ratio exceed 100. Therefore,

the ordinates of Fig. 5.2 are plotted over only two
orders of magnitude and the compression curves lend
themselves well to log-log plots.

When Reff = ∞ (perfect conductivity), flux is
conserved and the field compression ratio is given by

B(T )

B0
=

L0 + L1

L(t) + L1
=

L0 + L1

L0

(

1 − t

τ

)

+ L1

=
1

1 − t

τeff

=
1

1 − Teff
. (5.34)

The curve in Fig. 5.2 for Reff = ∞ is therefore a
straight line of slope −1. Curves for finite values of
Reff show lesser values of compression for the same
value of (1−Teff). As an example of the use of Fig. 5.2,
take

Reff = 1000,
L0

L0 + L1
= 0.9.

At burnout, 1 − Teff = 1.0 − 0.9 = 0.1. Reading
from the graph on the Reff = 1000 curve, field
multiplication at burnout is 8.70.

At a time t = 0.95τ , 1 – Teff1 − (0.95)(0.9) =
0.145. The compression at this stage of generation is
6.15, approximately 70 % of maximum compression.
This result illustrates a practical situation of great
importance in generator design. If this example was
based upon an actual design in which a field (or
current) amplification of 8.70 was required, then it
is clear that if compression to the load L1 were
stopped 5 % early in time for some reason, the actual
compression would be substantially reduced over the
design value. In many applications, generator burnout
times are only a few microseconds. It is clear that loss
of only a few tenths of a microsecond of compression
can be serious. This situation is aggravated when the
ratio (L0 + L1)/L1 is larger. The extreme case occurs
when L1 = 0, that is, no external load. Reference to
Fig. 5.1 shows that maximum compression at burnout
(1 − T = 0) is 520 for R = 1000 and at t/τ = 0.95,
the compression is only 16, or about 3 % of that for
complete compression.

Figure 5.2 also allows computation of the skin depth
at burnout, since the initial flux now resides entirely
in the generator plate skins and the external load, L1:

Dsk = x0

[

L0 + L1

L0

B0

BM

− L1

L0

]

.

For the example discussed above, Reff = 1000
and L0/(L0 + L1) = 0.9, the field magnification at
burnout is 8.70. Using (L0 + L1)/L0 = 1.111 and
L1/L0 = 0.111, one obtains Dsk = 0.0166x0. When
L1/L0 is small, the flux loss in the skin is larger.
Consider Reff = 1000 and L0/(L0 + L1) = 0.99. From
Fig. 5.2, BM/B0 = 61.2. With (L0 + L1)/L0 = 1.0101
and L1/L0 = 0.0101, the skin depth is found to be
Dsk = 0.0064x0. The skin depth is smaller in this
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Fig. 5.3. Two-loop external circuit connects to a plate
generator. The Loops are transformer coupled.

case, but the skin flux is larger since the final field
is greater. The flux losses for the two cases can be
compared by multiplying the skin depths by the field
compression factors. The ratio of these numbers for
the two cases is (0.0064)(61.2)/(0.0166)(8.70) = 2.71.

5.4. Initial Current Source,

Transformer Coupling to Load

Figure 5.3 shows a plate generator driving an
external inductance L1. The external load to be
energized, L3, is in turn transformer-coupled to
L1 through the secondary coil, L2. The mutual
inductance is M .

In practice, use of a switch, τS, which can
delay connection of the secondary circuit, allows
considerable versatility in the control of the
current pulse shape through the load L3. However,
incorporation of this feature in the analysis greatly
complicates the diffusion analysis. Instead, it is
assumed that the switch is closed at time t = 0, when
the generator motion starts. The initial currents are
then I1(0) = I0 for the initial slab surface current and
I2(0) = 0.

The external potential for the generator circuit and
the secondary circuit equation are

Vext = L1
dI1

dt
+ M

dI2

dt
(5.35)

and

M
dI1

dt
+ (L2 + L3)

dI2

dt
= 0. (5.36)

Equation (5.36) can be used to eliminate dI2/dt in
Vext and can also be integrated directly to give I2 in
terms of I1:

I2 = − M

L2 + L3
(I1(t) − I0) (5.37)

and

Vext = L′
1

dI1

dt
, L′

1 = L1 −
M2

L2 + L3
. (5.38)

Comparison of Eq. (5.38) with Eq. (5.26) shows that
this problem reduces exactly to that for an external
load, L1 above, with the substitution of the effective
inductance L′

1 for L1. The current I2 may be obtained
from I1, Eq. (5.37), and then from the cavity field.

If the coupling of L1 and L2 can be maintained
closely, the use of transformers greatly increases the
use of generators in that it allows them to energize
loads of much greater inductance than that of the
generator. Although this will not be demonstrated
here, transformers also allow energizing other types of
impedances such as resistances and capacitances that
would not be possible it they were series coupled to
the generator. Most of these examples can be readily
demonstrated by the lumped parameter treatment
outlined in Sec. 4.

As an example, consider a plate generator with
initial inductance L0 = 0.1 µH, which is to energize
a load L3 = 1 µH. If L3 were in series with the
generator, even in the lossless case, the maximum
energy multiplication factor would be (L0 +L1)/L1 =
(0.1 + 1)/1 = 1.1. Now consider use of a transformer
and take L1 = 0.01 µH and L2 = 4 µH. For a coupling
coefficient of 0.9, M = 0.9(L1L2)

1/2 = 0.18 µH. Note
on Fig. 5.2 that the maximum cavity field or primary
current multiplication is determined by the ordinate
value of L′

1/(L0 + L′
1) for a given Reynolds number

R′. From Eq. (5.38), it is found that

L′
1 = 0.01 − (0.18)2

5
= 0.00352µH

and
L′

1

L0 + L′
1

=
0.00352

0.10352
= 0.0340.

For R′ = 1000, the primary current multiplication
is read from Fig. 5.2 as 22.9. If I0 = 1 MA, then from
Eq. (5.37), the maximum value of I2 is

I2(max) = −0.18

5
(21.9) = −0.788MA.

The initial energy in the circuit and the final energy
stored in L3 are

E0 =
1

2
(0.1 + 0.01)10−6 · (106)2 = 55 kJ,
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E(Load,Max) =
1

2
(1)10−6 · (0.788 · 106)2 = 310 kJ,

and

E(Load,Max)

E0
= 5.6

If the example is repeated with very good coupling,
k = 0.98, i.e., M = 0.196 µH, the maximum load
current is 1.22 MA and the stored load energy is
744 kJ, or 13.3 times the initial circuit energy. On
the other hand, if k is reduced to 0.8 (M = 0.16 µH),
the maximum load energy is only 139 kJ, an energy
multiplication factor of about 2.5. It may be noted
from Fig. 5.2 that the energy gain developed in the
primary coil alone (no transformer) is about 10. The
reason for the relatively high energy gains in such a
large inductive load, especially for the tight-coupling
cases, is that the generator behaves as though it
were feeding a series inductance L′

1 whose value is
reduced over that of the true primary inductance L1.
The better the transformer coupling, the smaller the
effective inductance the generator sees.

5.5. Initial Current Source, External

Load R

For this case, the external potential of Eq. (2.26) is
IR. Replacing I by the cavity field −B(0, t)w/µ with
φ = 2l(x0 − vt)B(0, t) for the cavity flux, Eq. (2.26)
becomes

− dB(0, t)

dt
+

t

τ

dB(0, t)

dt
+

B(0, t)

τ

− R

L0
B(0, t) +

1

µσx0

(

∂B

∂X

)

0

= 0. (5.39)

From Ref. 9 [Eq. (30), p. 6], the transform of the
second term is

−d(sβ)

ds
/τ.

The transform of Eq. (5.39), after some
manipulations, gives the boundary condition

dβ

ds
+ β

[

τ +
Rτ

L0s

]

− τ

µσx0s

(

∂β

∂x

)

0

=
B(0, 0)τ

s
. (5.40)

As in the other examples, β(x, s) is given by
Eq. (5.9). Substitution of this expression into Eq.
(5.40) leads to the following equation for A(s):

dA

ds
+ A

[

τ +
Rτ

L0s
+

τ

x0
√

µσs

]

=
B(0, 0)τ

s
. (5.41)

The solution for A(s) is

A = s−Rτ/L0 exp

(

−τs − 2τs1/2

x0
√

µσ

)

×
[

k +

s
∫

(0)

B(0, 0)τξRτ/L0−1dξ

× exp

(

τξ +
2τξ1/2

x0
√

µσ

)]

. (5.42)

Following the procedure of the previous example, it
can be seen that only the second bracketed term of Eq.
(5.42) contributes for t < τ . At this point, let x = 0
and solve only for the cavity field. Setting ξ = Ws,
one obtains

B(0, t)

B(0, 0)
=

τ

2πi

1
∫

(0)

dW

W
WRτ/L0

×
∫

Br

ds exp

[

s[t − τ(1 − W )]

− 2τs1/2(1 − W 1/2)

x0
√

µσ

]

. (5.43)

Replacing the contour integral by the transform of
the latter exponential term displaced in time to t −
τ(1 − W ), as in Sec. 5.2, one obtains

B(0, t)

B(0, 0)
= τ

1
∫

1−t/T

dWWRτ/L0−1

× 2τ(1 − W 1/2)

x0
√

µσ2
√

π[t − τ(1 − W )]3/2

× exp



















−

(

2τ(1 − W 1/2)

x0
√

µσ

)2

4[t − τ(1 − W )]



















(5.44)

With the substitution Z = W−1/2 − 1, the limiting
cavity field at burnout, t = τ , is:

B(0, τ)

B(0, 0)
=

2
√

πRy

∞
∫

0

ZdZ

× (1 + Z)1−2Rτ/L0 exp(−Z2/Ry). (5.45)

As before, the Reynolds number, Ry, is defined as
follows;

Ry = µσvx0, v = x0/τ. (5.46)

For the particular case Rτ/L0 = 0.5 one obtains

B(0, τ)

B(0, 0)
=

√

Ry/π. (5.47)
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These results can now be compared to the lumped
parameter solution, Eq. (4.19), plotted in Fig. 4.2 for
Rτ/L0 = 0.5 and a = 0.1. The current amplification
was only about 2 for this case. From equation (5.47),
Ry ∼ 12 to match this case, a very small value for

explosive-driven systems. Note finally that
√

Ry/π is,
to within a factor of order unity, x0/τ skin. As is
often found, attempts to correlate skin depths from
the lumped parameter model are not very good. This
is the case here, although the skin depth taken for
the lumped circuit solution was 0.1(2x0) and that
acquired from Eq. (5.47) is several times larger.

5.6. Mixed Initial Field and Current

Sources

The examples considered here have had an initial
surface current I0 as the original source of magnetic
flux. Most of them can also be solved if the initial
energy comes from an impressed external field, B10,
or a mixture of the two sources. In the latter case, the
flux term entering the boundary condition, Eq. (2.26),
is given by Eq. (5.5). The major analytic difference in
the problem of Sec. 5.2 (no external load) occurs in Eq.
(5.12). If the initial energy source is from an externally
impressed field, the right-hand side of the equation
contains a term in 1/s2 instead of 1/s. The Laplace
inversion then gives the cavity field as an integral of
the error function [5] instead of Eq. (5.21). If the
initial energy source is mixed, then the cavity field
is expressed in terms of both solutions. The limiting
compression that can be obtained is then weighted
appropriately between the values given in Eqs. (5.2)
and (5.25).

Manuscript received August 1, 2003
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